资源类型

期刊论文 369

会议视频 1

年份

2023 31

2022 22

2021 22

2020 18

2019 10

2018 7

2017 23

2016 12

2015 10

2014 14

2013 32

2012 10

2011 19

2010 27

2009 17

2008 31

2007 38

2006 8

2005 5

2004 3

展开 ︾

关键词

温度 3

温度控制 3

低温SOFC 2

大气温度 2

技术路线 2

模糊控制 2

温度分布 2

高温气冷堆 2

(美国) 核管理委员会 1

10kV高压电力电缆 1

Au/Ti双功能催化剂 1

CCD 1

CCD影像 1

Cu(In 1

D1 turnover / photoinhibition / photoprotection / photosynthesis / tomato / xanthophyll cycle 1

Ga)Se2 1

H2有效利用率 1

ISO标准火灾实验系统 1

LED灯具;加速老化测试;中位寿命;滑动平均误差 1

展开 ︾

检索范围:

排序: 展示方式:

Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto

Yongli WANG, Shuyuan MA, Xiaodong Lü, Chuang XIE

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 423-431 doi: 10.1007/s11705-012-1211-7

摘要: 5-(Difluoromethoxy)-2-mercapto-1 -benzimidazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration.

关键词: 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB)     reactive crystallization     agglomeration     feeding rate     crystallization temperature     agitation rate    

Crystallization and viscosity-temperature characteristics during co-gasification of industrial sludge

Linmin ZHANG, Bin LIU, Juntao WEI, Xudong SONG, Yonghui BAI, Jiaofei WANG, Ying ZHOU, Huijun YANG, Guangsuo YU

《能源前沿(英文)》 2022年 第16卷 第6期   页码 1037-1047 doi: 10.1007/s11708-022-0824-x

摘要: Co-gasification of industrial sludge (IS) and coal was an effective approach to achieve harmless and sustainable utilization of IS. The long-term and stable operation of a co-gasification largely depends on fluidity of coal-ash slag. Herein, the effects of IS addition on the crystallization and viscosity of Shuangmazao (SMZ) coal were investigated by means of high temperature stage coupled with an optical microscope (HTSOM), a scanning electron microscopy coupled with an energy dispersive X-ray spectrometry (SEM-EDS), X-ray diffraction (XRD), a Fourier transform infrared spectrometer (FTIR), and FactSage software. The results showed that when the proportion of IS was less than 60%, with the addition of IS, the slag existed in an amorphous form. This was due to the high content of SiO2 and Al2O3 in SMZ ash and blended ash, which had a high glass-forming ability (GFA). The slag formed at a high temperature had a higher polymerization degree and viscosity, which led to a decrease in the migration ability between ions, and ultimately made the slag difficult to crystallize during the cooling. When the proportion of IS was higher than 60%, the addition of IS increased the CaO and FeO content in the system. As network modifiers, CaO and FeO could provide O2− at a high temperature, which reacted with silicate network structure and continuously destroyed the complexity of network structure, thus reducing the polymerization degree and viscosity of slag. At this time, the migration ability between ions was enhanced, and needle-shaped/rod-shaped crystals were precipitated during the cooling process. Finally, the viscosity calculated by simulation and Einstein-Roscoe empirical formula demonstrated that the addition of IS could significantly improve the fluidity of coal ash and meet the requirements of the liquid slag-tapping gasifier. The purpose of this work was to provide theoretical support for slag flow mechanisms during the gasifier slagging-tapping process and the resource treatment of industrial solid waste.

关键词: co-gasification     industrial sludge     crystallization     viscosity     mineral matter evolution    

含铬废水常温合成铬铁矿的结晶行为及稳定性 Article

吕晋芳, 全英聪, 童雄, 彭勇军, 郑永兴

《工程(英文)》 2022年 第9卷 第2期   页码 67-76 doi: 10.1016/j.eng.2020.12.018

摘要:

铁氧体法不仅能净化含重金属废水,而且能从废水中回收有价金属。因此,铁氧体法被认为是一种处理含铬废水最具潜力的技术。然而,由于高的合成温度,该技术尚未在工业上得到广泛应用。本文对常温合成铬铁矿的可行性进行全面研究。考查了关键因素对出水水质、合成产物结晶行为和稳定性的影响。结果表明,经过常温铁氧体法处理后,废水中铬的去除率超过99.0%,上清液中铬的浓度达到污水排放标准。提高充气速率、搅拌速率和反应时间有利于稳定铬铁矿的形成。通过常温铁氧体法获得的颗粒结构致密,最大粒径可达52 μm。在合成过程中,铬逐渐地进入尖晶石晶体结构,合成铬铁矿的分子式为Fe3-xCrxO4,其中x约0.30。为阐明常温环境下铬铁矿的合成机理,提出了微观反应路径。本研究为铁氧体法在含铬废水净化和综合利用方面的工业应用奠定了基础。

关键词: 含铬废水     铬铁矿合成     常温     结晶行为     稳定性    

Progress in membrane distillation crystallization: Process models, crystallization control and innovative

Xiaobin Jiang, Linghan Tuo, Dapeng Lu, Baohong Hou, Wei Chen, Gaohong He

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 647-662 doi: 10.1007/s11705-017-1649-8

摘要: Membrane distillation crystallization (MDC) is a promising hybrid separation process that has been applied to seawater desalination, brine treatment and wastewater recovery. In recent years, great progress has been made in MDC technologies including the promotion of nucleation and better control of crystallization and crystal size distribution. These advances are useful for the accurate control of the degree of supersaturation and for the control of the nucleation kinetic processes. This review focuses on the development of MDC process models and on crystallization control strategies. In addition, the most important innovative applications of MDC in the last five years in crystal engineering and pharmaceutical manufacturing are summarized.

关键词: membrane distillation crystallization     mathematics model     nucleation     separation     hybrid process    

Effects of a structurally related substance on the crystallization of paracetamol

Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 79-87 doi: 10.1007/s11705-013-1308-7

摘要: Paracetamol (PCM) was crystallized from an isopropanol (IPA) solution containing various small amounts of metacetamol as an additive. The effect on the nucleation kinetics was studied by measuring the induction time to nucleation and the metastable zone width using focused beam reflectance measurements (FBRM) and attenuated total reflectance (ATR-UV/Vis) spectroscopy. Both the induction time and the metastable zone width were expressed as functions of the additive concentration. Small amounts of metacetamol (1–4 mol-%) were found to cause significant inhibition to the nucleation by extending both the induction time and the metastable zone width. A progressive change in the morphology of the paracetamol crystals from tabular to columnar habit was observed with increasing metacetamol concentration. The solvent also had a significant effect on the size of the paracetamol crystals as smaller crystals were obtained in IPA than in aqueous solution. The dissolution rate of paracetamol was improved by the incorporation of metacetamol with 4 mol-% having the most effect. A supersaturation control (SSC) approach was implemented for the PCM-IPA system with and without metacetamol in an attempt to control and obtain larger metacetamol-doped paracetamol crystals.

关键词: acetaminophen     metacetamol     crystallization     metastable zone width     induction time     supersaturation control    

Interfacial induction and regulation for microscale crystallization process: a critical review

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 838-853 doi: 10.1007/s11705-021-2129-8

摘要: Microscale crystallization is at the frontier of chemical engineering, material science, and biochemical research and is affected by many factors. The precise regulation and control of microscale crystal processes is still a major challenge. In the heterogeneous induced nucleation process, the chemical and micro/nanostructural characteristics of the interface play a dominant role. Ideal crystal products can be obtained by modifying the interface characteristics, which has been proven to be a promising strategy. This review illustrates the application of interface properties, including chemical characteristics (hydrophobicity and functional groups) and the morphology of micro/nanostructures (rough structure and cavities, pore shape and pore size, surface porosity, channels), in various microscale crystallization controls and process intensification. Finally, possible future research and development directions are outlined to emphasize the importance of interfacial crystallization control and regulation for crystal engineering.

关键词: interfacial crystallization     heterogeneous nucleation     supersaturation     micro/nanostructure     process control and intensification    

The feasibility of coating by cooling crystallization on ibuprofen naked tablets

Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 211-219 doi: 10.1007/s11705-017-1619-1

摘要: Sugar spray coating is a frequently used process in the pharmaceutical industry. However, this process presents the disadvantage to form an amorphous coating around the active ingredient. A crystalline coating formed on the surface of a tablet is highly desirable. Recently, a new process of coating by cooling crystallization has been developed and applied on bisacodyl pastilles obtained by melt crystallization. In this work, we investigated the feasibility of coating by cooling crystallization on ibuprofen “naked tablets” manufactured by compression. In the first part of this work, the solubility and the metastable zone width have been determined experimentally for the coating solution because they are essential factors for any crystallization process. In the second part, the coating process is investigated on the operating conditions that affect the surface morphology and the crystal growth rate. These experimental conditions include concentration of the coating solution, degree of sub-cooling, agitation speed, retention time, and surface properties of the naked ibuprofen tablets. The results show that naked tablet coating by cooling crystallization is feasible and can be applied in the pharmaceutical industry.

关键词: coating     solution crystallization     ibuprofen tablets     sucrose    

Utilizing melt crystallization fundamentals in the development of a new tabletting technology

Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 346-352 doi: 10.1007/s11705-014-1443-9

摘要: Increasing production effeciency and lowering costs are some of the many advantages melt crystallization technology offers over the conventional methodology of tabletting. A normal tablet consists of a pure shell or a coat and a separate core constituting the pharmaceutical active ingredient. Great emphasis is put on the purity of the shell since its purpose is to solely protect and deliver the active ingredient to its target. Melt crystallization is a purification (separation) process. It is discussed here for its ability to produce coated tablets, by separating the “coating” material from the “to be coated” material coming from one molten mixture. Molten drops of lutrol-ibuprofen mixture are produced using the drop forming technique. The subsequent analysis involves proving and quantifying the phase separation (coat purity). The mechanism of a crystallizing drop is shown as direct evidence of the ongoing process. Moreover, solidified tablet batches are analyzed for the purity of their coating by measuring the ibuprofen concentration. This optimization process is carried out through multiple stages of development and condition enhancements in order to produce the most pure tablet coating. As a result, a trial showing an almost purely coated tablet is presented here.

关键词: phase separation     melt crystallization     tablets     process optimization    

Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom

Wen Zhang,Jack W. Szostak,Zhen Huang

《化学科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 196-202 doi: 10.1007/s11705-016-1565-3

摘要: X-ray crystallography is a powerful strategy for 3-D structure determination of macromolecules, such as nucleic acids and protein-nucleic acid complexes. However, the crystallization and phase determination are the major bottle-neck problems in crystallography. Recently we have successfully developed synthesis and strategy of selenium-derivatized nucleic acids (SeNA) for nucleic acid crystallography. SeNA might not only provide the rational strategies to solve the phase determination problem, but also offer a potential strategy to explore crystallization solutions.

关键词: selenium     DNA     RNA     nucleic acid     crystallization    

Preparation and crystallization kinetics of micron-sized Mg(OH)

Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU

《化学科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 130-138 doi: 10.1007/s11705-013-1332-7

摘要: Magnesium hydroxide is an important chemical, and is usually obtained from seawater or brine via precipitation process. The particle size distribution of magnesium hydroxide has great effects on the subsequent filtration and drying processes. In this paper, micron-sized magnesium hydroxide with high purity, large particle size and low water content in filter cake was synthesized via simple wet precipitation in a mixed suspension mixed product removal (MSMPR) crystallizer. The effects of reactant concentration, residence time and impurities on the properties of magnesium hydroxide were investigated by X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Malvern laser particle size analyzer. The results show that NaOH concentration and residence time have great effects on the water content and particle size of Mg(OH) . The spherical Mg(OH) with uniform diameter of about 30 μm was obtained with purity higher than 99% and water content less than 31%. Furthermore, the crystallization kinetics based on the population balance theory was studied to provide the theoretical data for industrial enlargement, and the simulation coefficients ( ) based on ASL model and C-R model are 0.9962 and 0.9972, respectively, indicating that the crystal growth rate of magnesium hydroxide can be well simulated by the size-dependent growth models.

关键词: magnesium hydroxide     precipitation     micron-sized     crystallization kinetics    

Applications of the crystallization process in the pharmaceutical industry

Sohrab ROHANI

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 2-9 doi: 10.1007/s11705-009-0297-z

摘要: The applications of the crystallization technique in the pharmaceutical industry as a purification and separation process for the isolation and synthesis of pure active pharmaceutical ingredients (API), co-crystals, controlled release pulmonary drug delivery, and separation of chiral isomers are briefly discussed using a few case studies. The effect of process variables and solvent on the polymorphism and morphology of stavudine is discussed. The implementation of external control in the form of feedback and real-time optimal control using cooling and antisolvent crystallization of paracetamol in water-isopropyl alcohol is introduced. Two methods to prepare micron-sized drug particles, namely, micro-crystallization and polymer-coated API-loaded magnetic nanoparticles for pulmonary drug delivery, are discussed. The significance of co-crystals in drug administration is highlighted using the theophylline-nicotinamide co-crystal system. Resolution of chloromandelic acid derivatives, a racemic compound, is achieved using direct crystallization and diastereomeric salts crystallization. The crystal structures of diastereomeric salts of chloromandelic acid and phenylethylamine are determined. The structure comparison between the less soluble and more soluble salts shows that weak interactions such as CH/π interactions and van der Waals forces contribute to chiral recognition when the hydrogen bonding patterns are similar.

关键词: feedback     morphology     pulmonary     paracetamol     recognition    

Importance of emulsions in crystallization—applications for fat crystallization

Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 43-48 doi: 10.1007/s11705-013-1309-6

摘要: Emulsions and crystallization are two independent research topics which normally do not overlap although a combination of the two could be applicable to many areas. Here, the importance of emulsions in the field of fat crystallization is described. Three applications with industrial relevance were chosen for investigation: fat fractionation, the solidification of phase change materials and solid lipid nanoparticles. For fat fractionation and phase change materials, emulsification can be applied as a tool to improve the fat crystallization process, and thus the product quality of the crystallized fat. Furthermore, the use of emulsification creates new application fields such as solid lipid nanoparticles in the area of fat crystallization.

关键词: emulsion     fat crystallization     phase change material     emulsion fractionation     emulsion solidification    

Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2074-2087 doi: 10.1007/s11705-023-2342-8

摘要: In this study, the rheological properties, crystallization and foaming behavior of poly(lactic acid) with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer. Polyamide 6 particles were deformed into nanofibrils during drawing. For the 10% polyamide 6 case, polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm, owing to the smaller polyamide 6 particle size and enhanced interface adhesion. Rheological experiments revealed that the viscosity and storage modulus of the composites were increased, which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils. The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites. The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid) crystallization. With the polyethylene glycol, the crystallization half-time reduced from 103.6 to 62.2 s. Batch foaming results indicated that owing to higher cell nucleation efficiency, the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio. Furthermore, the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.

关键词: poly(lactic acid)     foaming     microfibrillation     rheological property     crystallization    

Modeling of specific structure crystallization coupling with dissolution

Yuanhui JI, Hongliang QIAN, Chang LIU, Xiaohua LU, Xin FENG, Xiaoyan JI,

《化学科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 52-56 doi: 10.1007/s11705-009-0301-7

摘要: In this paper, the research framework for specific structure crystallization modeling has been proposed in which four steps are required in order to investigate the rigorous crystallization modeling by thermodynamics. The first is the activity coefficient model of the solution, the second is Solid-Liquid equilibrium, the third and fourth are the dissolution and crystallization kinetics modeling, respectively. Our investigations show that the mechanisms of complex structure formation and microphase transition can be analyzed by combining the dissolution and crystallization kinetics modeling. Moreover, the formation mechanism of the porous KCl has been analyzed, which may provide a reference for the porous structure formation in the advanced material synthesis.

关键词: structure crystallization     activity coefficient     reference     KCl     dissolution    

Effects of sucrose crystallization and moisture migration on the structural changes of a coated intermediate

Tiancheng LI, Peng ZHOU, Theodore P. LABUZA

《化学科学与工程前沿(英文)》 2009年 第3卷 第4期   页码 346-350 doi: 10.1007/s11705-009-0256-8

摘要: The purpose of this study was to investigate whether moisture migration and sugar crystallization play an important role in the changes of IMF matrix structure. The migration of water was monitored with changes of water activity in different physical domains of samples during storage, while the crystallization of sucrose was determined with X-ray powder diffraction (XRD). The formation of both a hard inner-layer and agglomerated particles in the inner matrix was observed during storage. Our results suggested that both moisture loss and sucrose crystallization were mainly responsible for the formation of the crusty intermediate inner layer, and the agglomerated matrix particles were the result of sucrose crystallization.

关键词: inner-layer     agglomerated     IMF     moisture migration     crystallization    

标题 作者 时间 类型 操作

Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto

Yongli WANG, Shuyuan MA, Xiaodong Lü, Chuang XIE

期刊论文

Crystallization and viscosity-temperature characteristics during co-gasification of industrial sludge

Linmin ZHANG, Bin LIU, Juntao WEI, Xudong SONG, Yonghui BAI, Jiaofei WANG, Ying ZHOU, Huijun YANG, Guangsuo YU

期刊论文

含铬废水常温合成铬铁矿的结晶行为及稳定性

吕晋芳, 全英聪, 童雄, 彭勇军, 郑永兴

期刊论文

Progress in membrane distillation crystallization: Process models, crystallization control and innovative

Xiaobin Jiang, Linghan Tuo, Dapeng Lu, Baohong Hou, Wei Chen, Gaohong He

期刊论文

Effects of a structurally related substance on the crystallization of paracetamol

Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY

期刊论文

Interfacial induction and regulation for microscale crystallization process: a critical review

期刊论文

The feasibility of coating by cooling crystallization on ibuprofen naked tablets

Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich

期刊论文

Utilizing melt crystallization fundamentals in the development of a new tabletting technology

Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH

期刊论文

Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom

Wen Zhang,Jack W. Szostak,Zhen Huang

期刊论文

Preparation and crystallization kinetics of micron-sized Mg(OH)

Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU

期刊论文

Applications of the crystallization process in the pharmaceutical industry

Sohrab ROHANI

期刊论文

Importance of emulsions in crystallization—applications for fat crystallization

Sandra PETERSEN, K. CHALEEPA, Joachim ULRICH

期刊论文

Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing

期刊论文

Modeling of specific structure crystallization coupling with dissolution

Yuanhui JI, Hongliang QIAN, Chang LIU, Xiaohua LU, Xin FENG, Xiaoyan JI,

期刊论文

Effects of sucrose crystallization and moisture migration on the structural changes of a coated intermediate

Tiancheng LI, Peng ZHOU, Theodore P. LABUZA

期刊论文